Simulation of two-fluid flows using a finite element/level set method. Application to bubbles and vesicle dynamics

نویسندگان

  • V. Doyeux
  • Y. Guyot
  • Vincent Chabannes
  • Christophe Prud'homme
  • M. Ismail
چکیده

A new framework for two-fluids flow using a Finite Element/Level Set method is presented and verified through the simulation of the rising of a bubble in a viscous fluid. This model is then enriched to deal with vesicles (which mimic red blood cells mechanical behavior) by introducing a Lagrange multiplier to constrain the inextensibility of the membrane. Moreover, high order polynomial approximation is used to increase the accuracy of the simulations. A validation of this model is finally presented on known behaviors of vesicles under flow such as “tank treading” and tumbling motions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Simulation of the Hydrodynamics of a Two-Dimensional Gas—Solid Fluidized Bed by New Finite Volume Based Finite Element Method

n this work, computational fluid dynamics of the flow behavior in a cold flow of fluidized bed is studied. An improved finite volume based finite element method has been introduced to solve the two-phase gas/solid flow hydrodynamic equations. This method uses a collocated grid, where all variables are located at the nodal points. The fluid dynamic model for gas/solid two-phase flow is based on ...

متن کامل

Numerical Simulation of Non-Newtonian Inelastic Flows in Channel based on Artificial Compressibility Method

In this study, inelastic constitutive modelling is considered for the simulation of shear-thinning fluids through a circular channel. Numerical solutions are presented for power-law inelastic model, considering axisymmetric Poiseuille flow through a channel. The numerical simulation of such fluid is performed by using the Galerkin finite element approach based on artificial compression method (...

متن کامل

Hydrodynamic investigation of multiple rising bubbles using lattice Boltzmann method

Hydrodynamics of multiple rising bubbles as a fundamental two-phase phenomenon is studied numerically by lattice Boltzmann method and using Lee two-phase model. Lee model based on Cahn-Hilliard diffuse interface approach uses potential form of intermolecular forces and isotropic finite difference discretization. This approach is able to avoid parasitic currents and leads to a stable procedure t...

متن کامل

Absolute Permeability Calculation by Direct Numerical Simulation in Porous Media

Simulating fluid flow at micro level is an ongoing problem. Simplified macroscopic flow models like Darcy’s law is unable to estimate fluid dynamic properties of porous media. The digital sample reconstruction by high resolution X-ray computed tomography scanning and fluid-dynamics simulation, together with the increasing power of super-computers, allow to carry out pore-scale simulations throu...

متن کامل

3D Finite element modeling for Dynamic Behavior Evaluation of Marin Risers Due to VIV and Internal Flow

The complete 3D nonlinear dynamic problem of extensible, flexible risers conveying fluid is considered. For describing the dynamics of the system, the Newtonian derivation procedure is followed. The velocity field inside the pipe formulated using hydrostatic and Bernoulli equations. The hydrodynamic effects of external fluids are taken into consideration through the nonlinear drag forces in var...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Computational Applied Mathematics

دوره 246  شماره 

صفحات  -

تاریخ انتشار 2013